top of page
Nebula%20nights_edited.jpg
WWTNS (1).png

On Wednesday, 11 am ET

 

Organized by David Hansel, Ran Darshan

& Carl van Vreeswijk (1962-2022) 

​

​

​

About Us

About the Seminar

VVTNS  is a weekly digital seminar on Zoom targeting the theoretical neuroscience community. Created as the World Wide Neuroscience Seminar (WWTNS) in November 2020 and renamed in homage to Carl van Vreeswijk in Memoriam (April 20, 2022), its aim is to be a platform to exchange ideas among theoreticians. Speakers have the occasion to talk about theoretical aspects of their work which cannot be discussed in a setting where the majority of the audience consists of experimentalists. The seminars  are 45 min long followed by a discussion and are held on Wednesdays at 11 am ET. The talks are recorded with authorization of the speaker and are available to everybody on our YouTube channel.

 

To participate in the seminar you need to fill out a registration form after which you will

receive an email telling you how to connect.

​

​

  • Twitter
  • YouTube

Srdjan Ostojic

ENS, Paris

January 22, 2025

E9XztwRW_400x400.jpg

Structured Excitatory-Inhibitory Networks: a low-rank approach

Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Classical theoretical analyses of dynamics in EI networks have revealed key principles such as EI balance or paradoxical responses to external inputs. These seminal results assume that synaptic strengths depend on the type of neurons they connect but are otherwise statistically independent. However, recent synaptic physiology datasets have uncovered connectivity patterns that deviate significantly from independent connection models. Simultaneously, studies of task-trained recurrent networks have emphasized the role of connectivity structure in implementing neural computations. Despite these findings, integrating detailed connectivity structures into mean-field theories of EI networks remains a substantial challenge. In this talk, I will outline a theoretical approach to understanding dynamics in structured EI networks by employing a low-rank approximation based on an analytical computation of the dominant eigenvalues of the full connectivity matrix. I will illustrate this approach by investigating the effects of pair-wise connectivity motifs on linear dynamics in EI networks. Specifically, I will present recent results demonstrating that an over-representation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks, generating a potential instability that challenges classical EI balance criteria. Furthermore, by examining the effects of external input, we found that chain motifs can, on their own, induce paradoxical responses, wherein an increased input to inhibitory neurons leads to a counterintuitive decrease in their activity through recurrent feedback mechanisms. Altogether, our theoretical approach opens new avenues for relating recorded connectivity structures with dynamics and computations in biological networks.

Organizers

davidhansel.jpg
carl1.jpg

David Hansel

I am a theoretical neuroscientist at the National Center for Scientific Research in Paris, France and visiting professor at The Hebrew University in Jerusalem, Israel. I am mainly interested in the recurrent dynamics in the cortex and 

basal ganglia.

Carl van Vreeswijk *

I am a theoretical neuroscientist working at the National Center for Scientific Research in Paris, France. My main interest is the dynamics of recurrent networks of neurons in the sensory system.

*deceased

Ran Darshan

 I am a theoretical neuroscientist working at the Faculty of Medicine, the Sagol School of Neuroscience & the School of Physics and Astronomy at Tel Aviv University, Israel. I am interested in learning and dynamics of neural networks. My main goal is to achieve a mechanistic understanding of brain functions.

image.png
image.png
image.png

©2020 by WWTNS

bottom of page