top of page
WWTNS (1).png

Wednesday, 5 pm CET, i.e, 11 am ET

 

Organized by David Hansel, Ran Darshan

& Carl van Vreeswijk (1962-2022) 

About Us

About the Seminar

VVTNS  is a weekly digital seminar on Zoom targeting the theoretical neuroscience community. Created as the World Wide Neuroscience Seminar (WWTNS) in November 2020 and renamed in homage to Carl van Vreeswijk in Memoriam (April 20, 2022), its aim is to be a platform to exchange ideas among theoreticians. Speakers have the occasion to talk about theoretical aspects of their work which cannot be discussed in a setting where the majority of the audience consists of experimentalists. The seminars  are 45 min long followed by a discussion and are held on Wednesdays at 11 am EDT. The talks are recorded with authorization of the speaker and are available to everybody on our YouTube channel.

 

To participate in the seminar you need to fill out a registration form after which you will

receive an email telling you how to connect.

  • Twitter
  • YouTube
lorenzo.jpeg

Neural mechanisms of memory-guided behaviour

Persistent, stimulus-dependent neuronal activity has been observed in numerous brain areas during tasks that require the temporary maintenance of information. Several competing hypotheses for the neuronal mechanisms underlying persistent activity have been proposed. We have employed data-driven models in conjunction with optogenetic disruptions of neural circuits within memory-guided motor tasks. Our findings revealed a mechanism governed by dynamic attractors, pivotal in sustaining neuronal activity. This mechanism, shaped by time-varying inputs reflecting temporal predictions, is instrumental in regulating the impact of sensory information on the premotor cortex, thereby preserving memory traces from distracting stimuli. We then asked how persistent activity driven by attractor dynamics emerges during motor learning. It has been proposed that activity-dependent synaptic plasticity underpins motor learning, as it can reconfigure network architectures to produce the appropriate neural dynamics for specific behaviors. To verify this hypothesis, we investigated how the mouse premotor cortex acquires specific neural dynamics that govern the planning of movement at different stages of motor learning. We developed network models that replicated the effects of acute manipulations of synaptic plasticity. The models, which display attractor dynamics, also explain flexible behavior after learning has ended. By leveraging the model's predictions, we can formulate testable hypotheses regarding the distinct mechanisms governing movement planning at various stages of the learning process.

Lorenzo Fontolan

Université Aix-Marseille

May 1st, 2024

Organizers

davidhansel.jpg
carl1.jpg

David Hansel

I am a theoretical neuroscientist at the National Center for Scientific Research in Paris, France and visiting professor at The Hebrew University in Jerusalem, Israel. I am mainly interested in the recurrent dynamics in the cortex and 

basal ganglia.

Carl van Vreeswijk *

I am a theoretical neuroscientist working at the National Center for Scientific Research in Paris, France. My main interest is the dynamics of recurrent networks of neurons in the sensory system.

*deceased

ran.jpeg

Ran Darshan

 I am a theoretical neuroscientist working at the Faculty of Medicine, the Sagol School of Neuroscience & the School of Physics and Astronomy at Tel Aviv University, Israel. I am interested in learning and dynamics of neural networks. My main goal is to achieve a mechanistic understanding of brain functions.

©2020 by WWTNS

bottom of page